skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Li, Wenxuan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We describe the discovery of an unspecific peroxygenase (UPO) variant that catalyzes the remote‐site functionalization of halogenated and unsaturated hydrocarbons with high catalytic site‐specificity. UPOs are fungal heme‐thiolate biocatalysts with wide‐ranging oxidative activities, including C─H bond oxygenation, usually with limited regioselectivity. We describe here a wild‐type MroUPO, newly isolated in high yield from a previously uncharacterized strain ofMarasmius rotula. This variant, MroUPO‐TN, catalyzes the selective oxygenation of a range of haloalkanes, cyclic haloalkanes and cyclic olefins to generate useful remote‐site haloketones. The regioselectivity for eight‐membered rings reaches 99% with significant enantiomeric excess. Mechanistic studies performed with deuterated substrates and18O‐labeling experiments have revealed a synergy between intrinsic substrate properties and the highly aliphatic, heme active site. The observed selectivity offers routes to new and useful, bifunctional synthons and pharmacophores, thus providing practical ways to employ these natural and environmentally benign biocatalysts. 
    more » « less